Pollutant Formation in Premixed and Diffusion Flames of Paraffinic Fuels Using the Reduced Utah Surrogate Mechanisms
نویسندگان
چکیده
Introduction Normal heptane, isooctane and cyclohexane have been the most interested surrogate components for liquid transportation and aviation fuels, due to their roles as indicative fuels for octane number and the representative compounds for normal, iso and cyclo-paraffins. Methodologies of mechanism generation for these representative fuel fractions have been discussed in detail in literature. The basics of fuel consumption in flames have been discussed by Vovelle, Ranzi, Zhang and coworkers, among others. Ranzi et al. presented a lumping technique that was also discussed in detail in an earlier study and used for generation of reaction mechanisms that can be used to model flames of liquid fuels. The lumping approach is an effective reduction technique for models of large aliphatic fuels. Reaction pathway analysis presents another reduction technique that was used to reduce a complete kinetic set to smaller models. Doute et al. reduced a n-decane model by removing less important reaction routes systematically and still obtained satisfactory agreement between the experimental data and predicted results. Bollig et al. proposed a reduced n-heptane mechanism and modeled a diffusion flame with the emphasis on pollutant-related intermediates. The mechanism was further reduced using another technique with the assumption of partial equilibrium for intermediates. There are many important applications that need reduced kinetic mechanism, especially in those that require expensive computations but are less demanding in kinetic details. For example, only a few dozen reactions can be comfortably acquired in aerodynamic applications. In this study, the detailed Utah Surrogate Mechanisms of about 1200 reactions and 210 species will be reduced by a combined technique. The resultant mechanism will be used to simulate premixed and counter-flow diffusion flames of normal heptane, iso-octane and cyclo-hexane fuels. And the pollutant formation of soot precursors, e.g. benzene and acetylene, will be investigated for the three common surrogate components.
منابع مشابه
Pollutant emissions from gasoline combustion. 1. Dependence on fuel structural functionalities.
To study the formation of air pollutants and soot precursors (e.g., acetylene, 1,3-butadiene, benzene, and higher aromatics) from aliphatic and aromatic fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submechanisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good predictions of species concentrations...
متن کاملCriteria for selection of components for surrogates of natural gas and transportation fuels q
The present paper addressed the production of soot precursors, acetylene, benzene and higher aromatics, by the paraffinic (n-, iso-, and cyclo-) and aromatic components in fuels. To this end, a normal heptane mechanism compiled from sub-models in the literature was extended to large normal-, iso-, and cyclo-paraffins by assigning generic rates to reactions involving paraffins, olefins, and alky...
متن کاملNumerical Study of NOx Emissions from n-Heptane and 1-Heptene Counterflow Flames
Several engine studies have observed higher amounts of nitric oxide (NO) during the combustion of biodiesel fuels than from regular diesel. One hypothesis for the increased NO formation is that unsaturated components in biodiesel fuels produce higher amounts of acetylene, especially during fuel-rich oxidation, which results in higher prompt NO. In this study, we examine this hypothesis by consi...
متن کاملModeling CO[subscript 2] Chemical Effects on CO Formation in Oxy-Fuel Diffusion Flames Using Detailed, Quasi-Global, and Global Reaction Mechanisms
Interest in oxy-fuel combustion as one of the leading carbon capture technologies has grown significantly in the past two decades. Experimental studies have shown higher CO concentration in oxy-fuel diffusion flames than in traditional air-fuel flames of both gaseous and solid fuels. The higher CO concentration changes the flame profiles, and it may have impacts on pollutants formation. This pa...
متن کاملSoot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure
Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species con...
متن کامل